A multiscale preconditioner for stochastic mortar mixed finite elements
نویسندگان
چکیده
منابع مشابه
A multiscale preconditioner for stochastic mortar mixed finite elements
0045-7825/$ see front matter 2010 Elsevier B.V. A doi:10.1016/j.cma.2010.10.015 ⇑ Corresponding author. E-mail address: [email protected] (T. Wilde The aim of this paper is to introduce a new approach to efficiently solve sequences of problems that typically arise when modeling flow in stochastic porous media. The governing equations are based on Darcy’s law with a stochastic permeability...
متن کاملA Multiscale Mortar Mixed Finite Element Method
We develop multiscale mortar mixed finite element discretizations for second order elliptic equations. The continuity of flux is imposed via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are discretized on a fine grid scale. The polynomial degree of the mortar and subdomain approximation spaces may differ; in fact, the mortar sp...
متن کاملMultiscale mixed finite elements
In this work, we propose a mixed finite element method for solving elliptic multiscale problems based on a localized orthogonal decomposition (LOD) of Raviart– Thomas finite element spaces. It requires to solve local problems in small patches around the elements of a coarse grid. These computations can be perfectly parallelized and are cheap to perform. Using the results of these patch problems...
متن کاملA Multiscale Mortar Multipoint Flux Mixed Finite Element Method
In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces....
متن کاملA Frozen Jacobian Multiscale Mortar Preconditioner for Nonlinear Interface Operators
We present an efficient approach for preconditioning systems arising in multiphase flow in a parallel domain decomposition framework known as the mortar mixed finite element method. Subdomains are coupled together with appropriate interface conditions using mortar finite elements. These conditions are enforced using an inexact Newton–Krylov method, which traditionally required the solution of n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering
سال: 2011
ISSN: 0045-7825
DOI: 10.1016/j.cma.2010.10.015